Mitogen-activated protein kinases and the evolution of Alzheimer's: a revolutionary neurogenetic axis for therapeutic intervention?

نویسنده

  • John J Haddad
چکیده

Alzheimer's disease (AD) is a neurogenetic condition that affects the processes via which the brain functions. Major observable hallmarks of AD are accumulated clusters of proteins in the brain. These clusters, termed neurofibrillary tangles (NFT), resemble pairs of threads wound around each other in a helix fashion accumulating within neurons. These tangles consist of a protein called Tau, which binds to tubulin, thus forming microtubules. Unlike NFTs, deposits of amyloid precursor protein (beta-APP) gather in the spaces between nerve cells. The nearby neurons often look swollen and deformed, and the clusters of protein are usually accompanied by reactive inflammatory cells, microglia, which are part of the brain's immune system responsible for degrading and removing damaged neurons or plaques. Since phosphorylation/dephosphorylation mechanisms are crucial in the regulation of Tau and beta-APP, a superfamily of mitogen-activated protein kinases (MAPKs) has recently emerged as key regulators of the formation of plagues, eventually leading to dementia and AD. The complex molecular interactions between MAPKs and proteins (plagues) associated with the evolution of AD form a cornerstone in the knowledge of a still burgeoning field of neurodegenerative diseases and ageing. This review overviews current understanding of the molecular pathways related to MAPKs and their role in the development of AD and, possibly, dementia. MAPKs, therefore, may constitute a neurogenetic, therapeutic target for the diagnosis and evolution of a preventative medical strategy for early detection, and likely treatment, of Alzheimer's.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Emphatic Role of Mitogen-Activated Protein Kinases (MAPKs) in the Cellular Mechanisms Mediating Alzheimer’s Disease

Alzheimer’s disease (AD) is a neurogenetic condition that affects the processes via which the brain functions. Major observable hallmarks of AD are accumulated clusters of proteins in the brain. These clusters, termed neurofibrillary tangles (NFT), resemble pairs of threads wound around each other in a helix fashion accumulating within neurons. These tangles consist of a protein called Tau, whi...

متن کامل

Mesoporous silica SBA-15 decreases hyperammonemia and affects the gene expression of mitogen-activated protein kinases in the prefrontal cortex of rats with bile duct ligation

Objective(s): We aim to examine possible ammonia lowering effects of mesoporous silica SBA-15 in rats after the common bile duct ligation (BDL). We also evaluate the effect of SBA-15 treatments during 28 days of BDL on locomotion and rearing behavior, as well as on the gene expression of Jnk3 and p38alpha (p38α) mitogen-activated protein kinases in the prefrontal corte...

متن کامل

P20: The Role of Protein Kinases in Memory

When an experience is encrypted into a long-lasting memory, it is believed that specific sets of neurons in the brain of the animal undergo changes including the strengthening of preexisting synapses and the growth and maintenance of new synaptic connections. These activity-dependent synaptic changes appear to require the coordination of a variety of cellular processes in spatially separated ce...

متن کامل

Iranian crack induces hepatic injury through mitogen-activated protein kinase pathway in the liver of Wistar rat

Objective(s): Iranian crack (IC) is a heroin-based substance manifesting various pathologic side effects. Herein, we aimed to investigate the mechanism of IC-induced liver injuries in Wistar rats. Materials and Methods: Twenty male Wistar rats were randomly divided into two groups: control, and IC (0.9 mg/kg/day/IP, for 30 days). Mitochondrial reactive oxygen species (ROS) production was measur...

متن کامل

Modulation of H2O2- Induced Neurite Outgrowth Impairment and Apoptosis in PC12 Cells by a 1,2,4-Triazine Derivative

Introduction: Increased oxidative stress is widely accepted to be a factor in the development and progression of Alzheimer’s disease. Triazine derivatives possess a wide range of pharmacological activities including anti-oxidative and anti-in.ammatory actions. In this study, we aimed to investigate the possible protective effect of 3-thioethyl-5,6-dimethoxyphenyl-1,2,4-triazine (TEDMT) on H2O2-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in neurobiology

دوره 73 5  شماره 

صفحات  -

تاریخ انتشار 2004